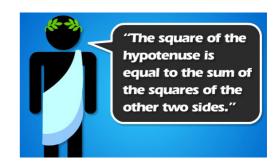
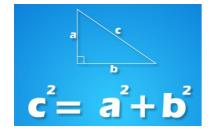
4. Fourth sequence: "Pythagoras"

Choose "Geometry and measures" → "Calculating lengths, areas and angles" → "Pythagoras" → "activity".


You will get this screen:

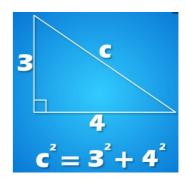
Press the "Start" button.

Pythagoras, who was very clever*, even by Greek standards, had a theorem which states that -all together now:


"The square* of the hypotenuse is equal to the sum of the squares of the other two sides."

In the triangle

C , can you tell which side is the hypotenuse?



We can write this piece of news down as a formula. It shows that c squared is equal to a squared plus b squared. And this being the magical world of mathematics, we can mix this up and calculate the squares or lengths* of the two other sides.

Circle the right answer: what can we calculate thanks to Pythagoras' theorem?

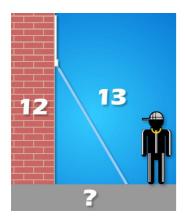
The area of the triangle	The perimeter of the triangle	The length of the sides of the triangle
The area of the thangle	The permitter of the thangle	The length of the slace of the thangle

Now; let's say we want to find the length of side c in this triangle. We know that c squared is equal to 3 squared plus 4 squared. So c is equal to the square root of 25, which is 5.

Write	down	in	maths,	and	then	ca	lculate	:

two squared :

five squared:.....

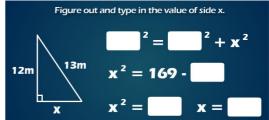

twelve squared plus six squared :

five squared minus four squared :

the square root of four:.....

the square root of nine:.....

the square root of sixteen:



Wayne here is not Greek. And he probably couldn't spell* 'theorem'.

But he does know a thing or two about ladders*. Can you help Wayne figure out where to place his 13 meters* ladder so that he can reach a window that is 12 meters high?

Obviously, he plans to clean the window, constable*.

Just fill in the gaps to get into the window.

Right answer: Very impressive! Are you Greek? Perhaps we should name a theorem after you!

Wrong answer: That's not right. Perhaps you applied Wayne's theorem by mistake. You should have gone with the Greek gazer* instead.

Vocabulary:

clever: intelligent, malin.

square : carré ; squared : au carré.

length: longueur

to spell: épeler (à ne pas confondre avec le nom, "a spell", un sort/enchantement).

ladder : échelle meter : mètre

constable : agent, policier gazer : observateur

Exercise:

You might have to use the $\sqrt{}$ button on your calculator (

00 00 00 00 00 00 00 00 00 00 00 00 00).
--	----

(D-6-4

	First triangle :
Question	
Work out the missing measurements on the right-angled triangles below:	
10 3	
?/ 4 \	
13 5 7	Second triangle :
Third triangle :	