MATHS IN ENGLISH

5. Fifth sequence: "Prime factors"

Get to: http://www.bbc.co.uk/schools/gcsebitesize/maths/

Choose "Number" → "Factors, powers and roots" → "Prime factors-foundation" → "activity".

The words marked with an asterisk* are translated in French at the bottom of the paragraph.

Meet posh* prime* numbers, and find out why they are the hardest working aristocrats of the maths world.

Prime numbers are pretty* posh; they have just two factors: themselves and one. Here are the first few prime numbers we'd like you to meet.

What is drawn* on the numbers to show that they are "posh"?

One doesn't get in because it's not a prime number. It's so posh that it doesn't have any factors, apart from itself.

Why isn't 1 a prime number?

You could think of prime numbers as the aristocrats of the maths world. Except this lot don't mind working for a living*. In fact prime numbers are the building* blocks (or factors) of all other numbers.

What are the prime numbers for the other numbers?

Let's look at the prime factors of twenty-four. We begin by dividing by the lowest* prime number that will work. So twenty-four is two times twelve. Twelve is two times six, and six is two times three. This means that the prime factors of twenty-four are two, two, two and three!

When you want to find out the prime factors of 24, what is the first operation you do?
How can you write 6 as a multiplication between two prime numbers?
What are the prime factors of twenty-four?

Work out the prime factors of 36.

Remember, you can type in only prime numbers. x = x = x = 0

Ok; now it's your chance to shine: work out the prime factors of thirty-six, and fill in the gaps!

And your answer is: $36 = \dots \times \dots \times \dots \times \dots$

Vocabulary:

posh: snob. N.B.: En français, le mot "snob" vient de la contraction de "sans noblesse".

prime: premier

pretty: joli, mais est parfois utilisé pour dire "assez". Par exemple, "pretty bad" signifie "assez mauvais".

to draw (drew, drawn): dessiner.

to work for a living: travailler pour gagner sa vie.

to build: construire.

lowest: le plus bas (ici, le plus petit).

Exercise:

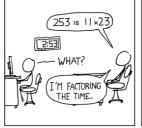
Here are the first prime numbers: 2; 3; 5; 7; 11; 13; 17; 19 ...

Work out the prime factors decomposition of the following numbers:

6=	 	 	
20=	 	 	
12 =	 	 	
50=	 	 	
60=	 	 	
120-			

This decomposition can be used to simplify fractions. For example, as the decomposition of 40 is $40 = 2 \times 2 \times 2 \times 5$, and the decomposition of 420 is $420 = 2 \times 2 \times 3 \times 5 \times 7$, we can simplify the fraction $\frac{40}{420}$ as follows:

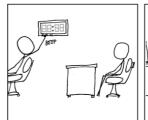
$$\frac{40}{420} = \frac{2 \times 2 \times 2 \times 5}{2 \times 2 \times 3 \times 5 \times 7} = \frac{\cancel{2} \times \cancel{2} \times 2 \times \cancel{3}}{\cancel{2} \times \cancel{2} \times 3 \times \cancel{2} \times 7} = \frac{2}{3 \times 7} = \frac{2}{21}.$$


And $\frac{2}{21}$ is the irreducible (unsimplifiable) form of the fraction $\frac{40}{420}$.

Do the same and find out the irreducible form of the following fractions (please write the calculations):

$$\frac{6}{20} = \dots$$

$$\frac{90}{60} = \dots$$


$$\frac{50}{120} = \dots$$

I HAVE NOTHING TO DO, SO IM TRYING TO CALCULATE THE PRIME FACTORS OF THE TIME EACH MINUTE BEFORE IT CHANGES.

IT WAS EASY WHEN I STARTED AT 1:00, BUT WITH EACH HOUR THE NUMBER GETS BIGGER

I WONDER HOW LONG I CAN KEEP UP.

XKCD.com —