
APPROXIMATING   π   WITH MADHAVA'S METHOD - SOLUTION 

 

Madhava's formula : 
1 1 1 1

4 1 ...
3 5 7 9

π
 

= − + − +  
. 

1) What is the first definition of the number Pi, and why is it called π ? 

a circle's circumference

this circle's diameter
π = , and the letter π  (p in ancient Greek), is the first letter of "perimeter". 

2) Why can't we simply write the number Pi with a decimal point? 

Because Pi isn't a decimal number; it is irrational! 

3) Why do you think this formula is called an "infinite series"? 

Because it's a sum with an infinite number of terms. 

4) Using Madhava's formula, calculate an approximation of Pi: 

- with a sum of 3 terms inside the square brackets : 3.46666666667 

- with a sum of 5 terms inside the square brackets : 3.33968253968 

- with a sum of 7 terms inside the square brackets : 3.28373848374 

What do you notice? It seems to be converging towards Pi. 

Gregory-Leibniz 
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... etc ... 

 

5) Using the fact that you can write any odd number under the form 2 1n + , and that the alternating signs can be written ( )1
n

− , 

write down Madhava's formula using the sign 

0n≥

∑ (which means "sum for all integers 0n ≥ "). 

( )
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= − + − + = × − ×  + 

∑  

6) Another infinite series which gives an approximation for Pi is the Nilakantha method. Kelallur Nilakantha Somayaji  (1444–1544) 

was also a major mathematician and astronomer of the Kerala school of astronomy and mathematics.  

His formula is: 

4 4 4 4
3 ...

2 3 4 4 5 6 6 7 8 8 9 10
π = + − + − +

× × × × × × × ×  

Using Nilakantha's formula, calculate an approximation of Pi: 

- with a sum of 3 terms : 3.13333333 

- with a sum of 5 terms : 3.13968254 

- with a sum of 7 terms : 3.14088134 

What do you notice? Can you compare the two formulas? 

Nilakantha's formula seems to converge towards Pi faster than Madhava's formula. 

 

 

 

 


